Молекулярная биология - definition. What is Молекулярная биология
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف


МОЛЕКУЛЯРНАЯ БИОЛОГИЯ         
исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и др. явления обусловлены структурой и свойствами биологически важных макромолекул (главным образом белков и нуклеиновых кислот). Тесно связана с биохимией и биофизикой, а исторически также с генетикой и микробиологией. Возникновение молекулярной биологии обычно относят к 1953, когда Дж. Уотсон и Ф. Крик предложили модель двойной спирали ДНК. В СССР молекулярная биология сформировалась главным образом благодаря трудам научных школ А. Н. Белозерского и В. А. Энгельгардта. Часто молекулярную биологию, включающую молекулярную генетику, объединяют с биохимией и биофизикой в физико-химическую биологию.
Молекулярная биология         

наука, ставящая своей задачей познание природы явлений жизнедеятельности путём изучения биологических объектов и систем на уровне, приближающемся к молекулярному, а в ряде случаев и достигающем этого предела. Конечной целью при этом является выяснение того, каким образом и в какой мере характерные проявления жизни, такие, как наследственность, воспроизведение себе подобного, биосинтез белков, возбудимость, рост и развитие, хранение и передача информации, превращения энергии, подвижность и т. д., обусловлены структурой, свойствами и взаимодействием молекул биологически важных веществ, в первую очередь двух главных классов высокомолекулярных биополимеров (См. Биополимеры) - белков и нуклеиновых кислот. Отличительная черта М. б. - изучение явлений жизни на неживых объектах или таких, которым присущи самые примитивные проявления жизни. Таковыми являются биологические образования от клеточного уровня и ниже: субклеточные органеллы, такие, как изолированные клеточные ядра, митохондрии, рибосомы, хромосомы, клеточные мембраны; далее - системы, стоящие на границе живой и неживой природы, - вирусы, в том числе и бактериофаги, и кончая молекулами важнейших компонентов живой материи - нуклеиновых кислот (См. Нуклеиновые кислоты) и белков (См. Белки).

М. б. - новая область естествознания, тесно связанная с давно сложившимися направлениями исследований, которые охватываются биохимией (См. Биохимия), биофизикой (См. Биофизика) и биоорганической химией (См. Биоорганическая химия). Разграничение здесь возможно лишь на основе учёта применяемых методов и по принципиальному характеру используемых подходов.

Фундамент, на котором развивалась М. б., закладывался такими науками, как генетика, биохимия, физиология элементарных процессов и т. д. По истокам своего развития М. б. неразрывно связана с молекулярной генетикой (См. Молекулярная генетика), которая продолжает составлять важную часть М. б., хотя и сформировалась уже в значительной мере в самостоятельную дисциплину. Вычленение М. б. из биохимии продиктовано следующими соображениями. Задачи биохимии в основном ограничиваются констатацией участия тех или иных химических веществ при определённых биологических функциях и процессах и выяснением характера их превращений; ведущее значение принадлежит сведениям о реакционной способности и об основных чертах химического строения, выражаемого обычной химической формулой. Т. о., по существу, внимание сосредоточено на превращениях, затрагивающих главновалентные химические связи. Между тем, как было подчёркнуто Л. Полингом, в биологических системах и проявлениях жизнедеятельности основное значение должно быть отведено не главновалентным связям, действующим в пределах одной молекулы, а разнообразным типам связей, обусловливающих межмолекулярные взаимодействия (электростатическим, ван-дер-ваальсовым, водородным связям и др.).

Конечный результат биохимического исследования может быть представлен в виде той или иной системы химических уравнений, обычно полностью исчерпываемой их изображением на плоскости, т. е. в двух измерениях. Отличительной чертой М. б. является её трехмерность. Сущность М. б. усматривается М. Перуцем в том, чтобы истолковать биологические функции в понятиях молекулярной структуры. Можно сказать, что если прежде при изучении биологических объектов необходимо было ответить на вопрос "что", т. е. какие вещества присутствуют, и на вопрос "где" - в каких тканях и органах, то М. б. ставит своей задачей получить ответы на вопрос "как", познав сущность роли и участия всей структуры молекулы, и на вопросы "почему" и "зачем", выяснив, с одной стороны, связи между свойствами молекулы (опять-таки в первую очередь белков и нуклеиновых кислот) и осуществляемыми ею функциями и, с другой стороны, роль таких отдельных функций в общем комплексе проявлений жизнедеятельности.

Решающую роль приобретают взаимное расположение атомов и их группировок в общей структуре макромолекулы, их пространственные взаимоотношения. Это касается как отдельных, индивидуальных, компонентов, так и общей конфигурации молекулы в целом. Именно в результате возникновения строго детерминированной объёмной структуры молекулы биополимеров приобретают те свойства, в силу которых они оказываются способными служить материальной основой биологических функций. Такой принцип подхода к изучению живого составляет наиболее характерную, типическую черту М. б.

Историческая справка. Огромное значение исследований биологических проблем на молекулярном уровне предвидел И. П. Павлов, говоривший о последней ступени в науке о жизни - физиологии живой молекулы. Самый термин "М. б." был впервые употреблен англ. учёным У. Астбери в приложении к исследованиям, касавшимся выяснения зависимостей между молекулярной структурой и физическими и биологическими свойствами фибриллярных (волокнистых) белков, таких, как коллаген, фибрин крови или сократительные белки мышц. Широко применять термин "М. б." стали с начала 50-х гг. 20 в.

Возникновение М. б. как сформировавшейся науки принято относить к 1953, когда Дж. Уотсоном и Ф. Криком в Кембридже (Великобритания) была раскрыта трёхмерная структура дезоксирибонуклеиновой кислоты (См. Дезоксирибонуклеиновая кислота) (ДНК). Это позволило говорить о том, каким образом детали данной структуры определяют биологические функции ДНК в качестве материального носителя наследственной информации. В принципе, об этой роли ДНК стало известно несколько раньше (1944) в результате работ американского генетика О. Т. Эйвери с сотрудниками (см. Молекулярная генетика), но не было известно, в какой мере данная функция зависит от молекулярного строения ДНК. Это стало возможным лишь после того, как в лабораториях У. Л. Брэгга (См. Брэгга - Вульфа условие), Дж. Бернала и др. были разработаны новые принципы рентгеноструктурного анализа, обеспечившие применение этого метода для детального познания пространственного строения макромолекул белков и нуклеиновых кислот.

Уровни молекулярной организации. В 1957 Дж. Кендрю установил трёхмерную структуру Миоглобина, а в последующие годы это было сделано М. Перуцем в отношении Гемоглобина. Были сформулированы представления о различных уровнях пространственной организации макромолекул. Первичная структура - это последовательность отдельных звеньев (мономеров) в цепи образующейся молекулы полимера. Для белков мономерами являются Аминокислоты, для нуклеиновых кислот - Нуклеотиды. Линейная, нитевидная молекула биополимера в результате возникновения водородных связей обладает способностью определённым образом укладываться в пространстве, например в случае белков, как показал Л. Полинг, приобретать форму спирали. Это обозначается как вторичная структура. О третичной структуре говорят, когда молекула, обладающая вторичной структурой, складывается далее тем или иным образом, заполняя трёхмерное пространство. Наконец, молекулы, обладающие трёхмерной структурой, могут вступать во взаимодействие, закономерно располагаясь в пространстве относительно друг друга и образуя то, что обозначается как четвертичная структура; её отдельные компоненты обычно называемые субъединицами.

Наиболее наглядным примером того, как молекулярная трёхмерная структура определяет биологические функции молекулы, служит ДНК. Она обладает строением двойной спирали: две нити, идущие во взаимно противоположном направлении (антипараллельно), закручены одна вокруг другой, образуя двойную спираль со взаимно комплементарным расположением оснований, т. е. так, что против определённого основания одной цепи всегда в другой цепи стоит такое основание, которое наилучшим образом обеспечивает образование водородных связей: адепин (А) образует пару с тимином (Т), гуанин (Г) - с цитозином (Ц). Такая структура создаёт оптимальные условия для важнейших биологических функций ДНК: количественного умножения наследственной информации в процессе клеточного деления при сохранении качественной неизменности этого потока генетической информации. При делении клетки нити двойной спирали ДНК, служащей в качестве матрицы, или шаблона, расплетаются и на каждой из них под действием ферментов синтезируется комплементарная новая нить. В результате этого из одной материнской молекулы ДНК получаются две совершенно тождественные ей дочерние молекулы (см. Клетка, Митоз).

Так же и в случае гемоглобина оказалось, что его биологическая функция - способность обратимо присоединять кислород в лёгких и затем отдавать его тканям - теснейшим образом связана с особенностями трёхмерной структуры гемоглобина и её изменениями в процессе осуществления свойственной ему физиологической роли. При связывании и диссоциации O2 происходят пространственные изменения конформации молекулы гемоглобина, ведущие к изменению сродства содержащихся в нём атомов железа к кислороду. Изменения размеров молекулы гемоглобина, напоминающие изменения объёма грудной клетки при дыхании, позволили назвать гемоглобин "молекулярными лёгкими".

Одна из важнейших черт живых объектов - их способность тонко регулировать все проявления жизнедеятельности. Крупным вкладом М. б. в научные открытия следует считать раскрытие нового, ранее неизвестного регуляторного механизма, обозначаемого как аллостерический эффект. Он заключается в способности веществ низкой молекулярной массы - т. н. лигандов - видоизменять специфические биологические функции макромолекул, в первую очередь каталитически действующих белков - ферментов, гемоглобина, рецепторных белков, участвующих в построении биологических мембран (См. Биологические мембраны), в синаптической передаче (см. Синапсы) и т. д.

Три биотических потока. В свете представлений М. б. совокупность явлений жизни можно рассматривать как результат сочетания трёх потоков: потока материи, находящего своё выражение в явлениях обмена веществ, т. е. ассимиляции и диссимиляции; потока энергии, являющейся движущей силой для всех проявлений жизнедеятельности; и потока информации, пронизывающего собой не только всё многообразие процессов развития и существования каждого организма, но и непрерывную череду сменяющих друг друга поколений. Именно представление о потоке информации, внесённое в учение о живом мире развитием М. б., накладывает на неё свой специфический, уникальный отпечаток.

Важнейшие достижения молекулярной биологии. Стремительность, размах и глубину влияния М. б. на успехи в познании коренных проблем изучения живой природы справедливо сравнивают, например, с влиянием квантовой теории на развитие атомной физики. Два внутренне связанных условия определили это революционизирующее воздействие. С одной стороны, решающую роль сыграло обнаружение возможности изучения важнейших проявлений жизнедеятельности в простейших условиях, приближающихся к типу химических и физических экспериментов. С другой стороны, как следствие указанного обстоятельства, имело место быстрое включение значительного числа представителей точных наук - физиков, химиков, кристаллографов, а затем и математиков - в разработку биологических проблем. В своей совокупности эти обстоятельства и обусловили необычайно быстрый темп развития М. б., число и значимость её успехов, достигнутых всего за два десятилетия. Вот далеко не полный перечень этих достижений: раскрытие структуры и механизма биологической функции ДНК, всех типов РНК и рибосом (См. Рибосомы), раскрытие генетического кода (См. Код генетический); открытие обратной транскрипции (См. Транскрипция), т. е. синтеза ДНК на матрице РНК; изучение механизмов функционирования дыхательных пигментов; открытие трёхмерной структуры и её функциональной роли в действии ферментов (См. Ферменты), принципа матричного синтеза и механизмов биосинтеза белков; раскрытие структуры вирусов (См. Вирусы) и механизмов их репликации, первичной и, частично, пространственной структуры антител; изолирование индивидуальных Генов, химический, а затем биологический (ферментативный) синтез гена, в том числе человеческого, вне клетки (in vitro); перенос генов из одного организма в другой, в том числе в клетки человека; стремительно идущая расшифровка химической структуры возрастающего числа индивидуальных белков, главным образом ферментов, а также нуклеиновых кислот; обнаружение явлений "самосборки" некоторых биологических объектов всё возрастающей сложности, начиная от молекул нуклеиновых кислот и переходя к многокомпонентным ферментам, вирусам, рибосомам и т. д.; выяснение аллостерических и других основных принципов регулирования биологических функций и процессов.

Редукционизм и интеграция. М. б. является завершающим этапом того направления в изучении живых объектов, которое обозначается как "редукционизм", т. е. стремление свести сложные жизненные функции к явлениям, протекающим на уровне молекул и потому доступным изучению методами физики и химии. Достигнутые М. б. успехи свидетельствуют об эффективности такого подхода. Вместе с тем необходимо учитывать, что в естественных условиях в клетке, ткани, органе и целом организме мы имеем дело с системами возрастающей степени усложнённости. Такие системы образуются из компонентов более низкого уровня путём их закономерной интеграции в целостности, приобретающие структурную и функциональную организацию и обладающие новыми свойствами. Поэтому по мере детализации познаний о закономерностях, доступных раскрытию на молекулярном и примыкающих уровнях, перед М. б. встают задачи познания механизмов интеграции как линии дальнейшего развития в изучении явлений жизни. Отправной точкой здесь служит исследование сил межмолекулярных взаимодействий - водородных связей, ван-дер-ваальсовых, электростатических сил и т. д. Своей совокупностью и пространственным расположением они образуют то, что может быть обозначено как "интегративная информация". Её следует рассматривать как одну из главных частей уже упоминавшегося потока информации. В области М. б. примерами интеграции могут служить явления самосборки сложных образований из смеси их составных частей. Сюда относятся, например, образование многокомпонентных белков из их субъединиц, образование вирусов из их составных частей - белков и нуклеиновой кислоты, восстановление исходной структуры рибосом после разделения их белковых и нуклеиновых компонентов и т. д. Изучение этих явлений непосредственно связано с познанием основных феноменов "узнавания" молекул биополимеров. Речь идёт о том, чтобы выяснить, какие сочетания аминокислот - в молекулах белков или нуклеотидов - в нуклеиновых кислотах взаимодействуют между собой при процессах ассоциации индивидуальных молекул с образованием комплексов строго специфичного, наперёд заданного состава и строения. Сюда относятся процессы образования сложных белков из их субъединиц; далее, избирательное взаимовоздействие между молекулами нуклеиновых кислот, например транспортными и матричными (в этом случае существенно расширило наши сведения раскрытие генетического кода); наконец, это образование многих типов структур (например, рибосом, вирусов, хромосом), в которых участвуют и белки, и нуклеиновые кислоты. Раскрытие соответствующих закономерностей, познание "языка", лежащего в основе указанных взаимодействий, составляет одну из важнейших областей М. б., ещё ожидающую своей разработки. Эту область рассматривают как принадлежащую к числу фундаментальных проблем для всей биосферы.

Задачи молекулярной биологии. Наряду с указанными важными задачами М. б. (познанием закономерностей "узнавания", самосборки и интеграции) актуальным направлением научного поиска ближайшего будущего является разработка методов, позволяющих расшифровывать структуру, а затем и трёхмерную, пространственную организацию высокомолекулярных нуклеиновых кислот. В данное время это достигнуто в отношении общего плана трёхмерной структуры ДНК (двойной спирали), но без точного знания её первичной структуры. Быстрые успехи в разработке аналитических методов позволяют с уверенностью ждать достижения указанных целей на протяжении ближайших лет. Здесь, разумеется, главные вклады идут от представителей смежных наук, в первую очередь физики и химии. Все важнейшие методы, использование которых обеспечило возникновение и успехи М. б., были предложены и разработаны физиками (ультрацентрифугирование, рентгеноструктурный анализ, электронная микроскопия, ядерный магнитный резонанс и др.). Почти все новые физические экспериментальные подходы (например, использование ЭВМ, синхротронного, или тормозного, излучения, лазерной техники и др.) открывают новые возможности для углублённого изучения проблем М. б. В числе важнейших задач практического характера, ответ на которые ожидается от М. б., на первом месте стоит проблема молекулярных основ злокачественного роста, далее - пути предупреждения, а быть может, и преодоления наследственных заболеваний - "молекулярных болезней" (См. Молекулярные болезни). Большое значение будет иметь выяснение молекулярных основ биологического катализа, т. е. действия ферментов. К числу важнейших современных направлений М. б. следует отнести стремление расшифровать молекулярные механизмы действия гормонов (См. Гормоны), токсических и лекарственных веществ, а также выяснить детали молекулярного строения и функционирования таких клеточных структур, как биологические мембраны, участвующие в регуляции процессов проникновения и транспорта веществ. Более отдалённые цели М. б. - познание природы нервных процессов, механизмов памяти (См. Память) и т. д. Один из важных формирующихся разделов М. б. - т. н. генная инженерия, ставящая своей задачей целенаправленное оперирование генетическим аппаратом (Геномом) живых организмов, начиная с микробов и низших (одноклеточных) и кончая человеком (в последнем случае прежде всего в целях радикального лечения наследственных заболеваний (См. Наследственные заболевания) и исправления генетических дефектов). О более обширных вмешательствах в генетическую основу человека речь может идти лишь в более или менее отдалённом будущем, т. к. при этом возникают серьёзные препятствия как технического, так и принципиального характера. В отношении микробов, растений, а возможно, и с.-х. животных такие перспективы весьма обнадёживающи (например, получение сортов культурных растений, обладающих аппаратом фиксации азота из воздуха и не нуждающихся в удобрениях). Они основаны на уже достигнутых успехах: изолирование и синтез генов, перенос генов из одного организма в другой, применение массовых культур клеток в качестве продуцентов хозяйственных или медицинских важных веществ.

Организация исследований по молекулярной биологии. Быстрое развитие М. б. повлекло за собой возникновение большого числа специализированных научно-исследовательских центров. Количество их быстро возрастает. Наиболее крупные: в Великобритании - Лаборатория молекулярной биологии в Кембридже, Королевский институт в Лондоне; во Франции - институты молекулярной биологии в Париже, Марселе, Страсбуре, Пастеровский институт; в США - отделы М. б. в университетах и институтах в Бостоне (Гарвардский университет, Массачусетсский технологический институт), Сан-Франциско (Беркли), Лос-Анджелесе (Калифорнийский технологический институт), Нью-Йорке (Рокфеллеровский университет), институты здравоохранения в Бетесде и др.; в ФРГ - институты Макса Планка, университеты в Гёттингене и Мюнхене; в Швеции - Каролинский институт в Стокгольме; в ГДР - Центральный институт молекулярной биологии в Берлине, институты в Йене и Галле; в Венгрии - Биологический центр в Сегеде. В СССР первый специализированный институт М. б. был создан в Москве в 1957 в системе АН СССР (см. Молекулярной биологии институт); затем были образованы: институт биоорганической химии АН СССР в Москве, институт белка в Пущине, Биологический отдел в институте атомной энергии (Москва), отделы М. б. в институтах Сибирского отделения АН в Новосибирске, Межфакультетская лаборатория биоорганической химии МГУ, сектор (затем институт) молекулярной биологии и генетики АН УССР в Киеве; значительная работа по М. б. ведётся в институте высокомолекулярных соединений в Ленинграде, в ряде отделов и лабораторий АН СССР и других ведомств.

Наряду с отдельными научно-исследовательскими центрами возникли организации более широкого масштаба. В Западной Европе возникла Европейская организация по М. б. (ЕМБО), в которой участвует свыше 10 стран. В СССР при институте молекулярной биологии в 1966 создан научный совет по М. б., являющийся координирующим и организующим центром в этой области знаний. Им выпущена обширная серия монографий по важнейшим разделам М. б., регулярно организуются "зимние школы" по М. б., проводятся конференции и симпозиумы по актуальным проблемам М. б. В дальнейшем научные советы по М. б. были созданы при АМН СССР и многих республиканских Академиях наук. С 1966 выходит журнал "Молекулярная биология" (6 выпусков в год).

За сравнительно короткий срок в СССР вырос значительный отряд исследователей в области М. б.; это учёные старшего поколения, частично переключившие свои интересы из др. областей; в главной же своей массе это многочисленные молодые исследователи. Из числа ведущих учёных, принявших деятельное участие в становлении и развитии М. б. в СССР, можно назвать таких, как А. А. Баев, А. Н. Белозерский, А. Е. Браунштейн, Ю. А. Овчинников, А. С. Спирин, М. М. Шемякин, В. А. Энгельгардт. Новым достижениям М. б. и молекулярной генетики будет способствовать постановление ЦК КПСС и Совета Министров СССР (май 1974) "О мерах по ускорению развития молекулярной биологии и молекулярной генетики и использованию их достижений в народном хозяйстве".

Лит.: Вагнер Р., Митчелл Г., Генетика и обмен веществ, пер. с англ., М., 1958; Сент-Дьердь и А., Биоэнергетика, пер. с англ., М., 1960; Анфинсен К., Молекулярные основы эволюции, пер. с англ., М., 1962; Стэнли У., Вэленс Э., Вирусы и природа жизни, пер. с англ., М., 1963; Молекулярная генетика, пер. с. англ., ч. 1, М., 1964; Волькенштейн М. В., Молекулы и жизнь. Введение в молекулярную биофизику, М., 1965; Гауровиц Ф., Химия и функции белков, пер. с англ., М., 1965; Бреслер С. Е., Введение в молекулярную биологию, 3 изд., М. - Л., 1973; Ингрэм В., Биосинтез макромолекул, пер. с англ., М., 1966; Энгельгардт В. А., Молекулярная биология, в кн.: Развитие биологии в СССР, М., 1967; Введение в молекулярную биологию, пер. с англ., М., 1967; Уотсон Дж., Молекулярная биология гена, пер. с англ., М., 1967; Финеан Дж., Биологические ультраструктуры, пер. с англ., М., 1970; Бендолл Дж., Мышцы, молекулы и движение, пер. с англ., М., 1970; Ичас М., Биологический код, пер. с англ., М., 1971; Молекулярная биология вирусов, М., 1971; Молекулярные основы биосинтеза белков, М., 1971; Бернхард С., Структура и функция ферментов, пер. с англ., М., 1971; Спирин А. С., Гаврилова Л. П., Рибосома, 2 изд., М., 1971; Френкель-Конрат Х., Химия и биология вирусов, пер. с англ., М., 1972; Смит К., Хэнеуолт Ф., Молекулярная фотобиология. Процессы инактивации и восстановления, пер. с англ., М., 1972; Харрис Г., Основы биохимической генетики человека, пер. с англ., М., 1973.

В. А. Энгельгардт.

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ         
детальное изучение живых клеток и их составных частей (органелл), прослеживающее роль отдельных идентифицируемых соединений в функционировании этих структур. К сфере молекулярной биологии относится исследование всех связанных с жизнью процессов, таких, как питание и выделение, дыхание, секреция, рост, репродукция, старение и смерть. Важнейшее достижение молекулярной биологии - расшифровка генетического кода и выяснение механизма использования клеткой информации, необходимой, например, для синтеза ферментов. Молекулярнобиологические исследования способствуют и более полному пониманию других процессов жизнедеятельности - фотосинтеза, клеточного дыхания и мышечной активности.
В молекулярной биологии предпочитают работать с относительно простыми системами, такими, как одноклеточные организмы (бактерии, некоторые водоросли), в которых число компонентов сравнительно невелико, а значит, и различить их легче. Но и при этом требуются весьма изощренные методы для того, чтобы точно локализовать отдельные вещества и отличить их от всех других.
На основе физико-химических подходов и инструментария разработаны сложные, чувствительные приборы и методы, приспособленные для работы с органическими соединениями живых систем. Метод радиоавтографии основан на включении в определенные вещества радиоактивных атомов, т.н. "радиоактивной метки", которая позволяет проследить - по испускаемому излучению - химические превращения этих веществ. При изучении низкомолекулярных веществ применяют методы, позволяющие объединить малые молекулы вещества в т.н. макромолекулы, достаточно крупные для того, чтобы их можно было наблюдать при большом увеличении трансмиссионного электронного микроскопа. По дифрации рентгеновских лучей определяют общую форму макромолекул, как это было сделано, например, с дезоксирибонуклеиновой кислотой (ДНК). Для разделения смеси веществ, различающихся по размерам и химическому составу, используют различия в скорости их передвижения в электрическом поле (метод электрофореза) или разную скорость диффузии в растворителе, протекающем через неподвижную фазу, например бумагу (метод хроматографии).
С помощью соответствующих ферментов можно определить нуклеотидную последовательность генов, а по ней - аминокислотную последовательность синтезируемых белков. Если у животных разных видов близки нуклеотидные последовательности генов, кодирующих общие для них белки, например гемоглобин, можно заключить, что в прошлом эти животные имели общего предка. Если же различия в их генах велики, то ясно, что расхождение видов от общего предка произошло намного раньше. Такие молекулярно-биологические исследования открыли новый подход к изучению эволюции организмов.
Важный вклад в медицину должна внести идентификация вирусов по их составу. С ее помощью можно, например, установить, что вирус, вызывающий ту или иную болезнь у человека, гнездится естественным образом в каком-нибудь диком животном, от которого и передается человеку болезнь. Если у животных, которые служат в природе резервуаром данного вируса, симптомы болезни не обнаруживаются, то, видимо, здесь действует какой-то механизм иммунитета, и тогда возникает новая задача - изучить этот механизм, чтобы попытаться включить его в иммунную систему человека.
Областью молекулярной биологии, вызывающей большие споры и часто неприятие, является генная инженерия, или технология рекомбинантных ДНК, суть которой в том, что в организм растения или животного встраивают чужие гены, чтобы придать ему новые свойства или же компенсировать какие-нибудь наследственные дефекты. См. также КЛЕТКА; ЦИТОЛОГИЯ; ФЕРМЕНТЫ; ГЕННАЯ ИНЖЕНЕРИЯ; МЕТАБОЛИЗМ; НУКЛЕИНОВЫЕ КИСЛОТЫ; ДЫХАНИЕ.

ويكيبيديا

Молекулярная биология
Молекуля́рная биоло́гия — комплекс биологических наук, изучающих механизмы хранения, передачи и реализации генетической информации, строение и функции сложных высокомолекулярных соединений, составляющих клетку: нерегулярных биополимеров (белков и нуклеиновых кислот)Белозерский А. Н. Молекулярная биология // Познание продолжается. — М.: Просвещение, 1970. — Тираж 500 000 экз. — С. 181.
أمثلة من مجموعة نصية لـ٪ 1
1. Молекулярная биология спешит на помощь социологам.
2. Или те, которые государство поддерживает, например, нанотехнологии, молекулярная биология.
3. Мы там открыли кое-какие интересные штуки, но это более "кондовая" молекулярная биология.
4. Например, по такой востребованной ныне специальности, как молекулярная биология, ежегодно в Америку отбывает половина выпускников.
5. Речь идет об исследованиях во всех областях медицины- гематология, онкология, морфология, молекулярная биология.
What is МОЛЕКУЛЯРНАЯ БИОЛОГИЯ - definition